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Objective

• NASA primarily relies on custom written codes to analyze 
ablation and design TPS systems

• The basic modeling methodology was developed 

50 years ago

• Through the years, CFD, thermal, and structural 
mechanics calculations have migrated from custom, user-
written programs to commercial software packages

• Objective is to determine that a commercial finite 
element code can accurately and efficiently solve 
pyrolyzing ablation problems
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Advantages of Commercial Codes

• Usability (e.g. GUI)
• Built–in pre- and post-processing 
• Built-in grid generation
• Efficient solution algorithms
• Multi-dimensional capability (planar, cylindrical, 1-D, 

2-D, & 3-D)
• Built in function capability (predefined, analytic, and tabular)
• Validated by a wide user base
• Reduced life cycle cost 
• Regular upgrades and maintenance
• Modeling flexibility
• Better documentation
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Finite-Element Program Choice

• COMSOL Multiphysics chosen as simulation platform
• General-purpose software platform

– Developed to handle wide variety of modeling physics
– Allows arbitrarily inclusions of differential and algebraic 

modeling equations in domains, along boundaries, and at points
• Solvers based on advanced numerical methods
• Arbitrary Lagrangian-Eulerian (ALE) capability (moving boundary)
• Dynamic grid reallocation
• Flexible solution algorithms (fully coupled and sequential)
• Provides coupling between physical phenomena
• Incorporates automation and optimization capabilities
• Unified user interface (formulation, gridding, plotting, animation, & 

reporting)
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Example Uses of Pyrolyzing Ablator
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General Problem Illustration
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Modeling Requirements for Pyrolyzing Ablators

• Non-linear heat conduction in solids

• Non-linear, thermal boundary conditions

• Moving boundaries

• Non-linear, time-dependent quasi-solid in-depth reactions

• Transport and thermal properties as a function of material 
state as well as temperature

• Inclusion of the thermal effects of gas flow within the solid 
material

• In-depth pore pressure due to pyrolysis gas transport (not 
always employed)

8



• Material consists of three constituents (although the number 
could be increased)

• Components A and B decompose according to:

• Material properties are a function not only of temperature, 
but also material state

Decomposition Model
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𝑦
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• In-depth temperature time history can come from:
– Thermogravimetric Analysis (TGA)

– Steady-State energy balance (1-D transformed coordinate)

– Transient energy balance (1-D transformed coordinate)

– Transient Energy Balance (2-D fixed coordinate)

Temperature History
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Material Selection

• For comparisons, utilize Theoretical Ablative 
Composite for Open Testing (TACOT) Material 
Properties

• Open, simulated pyrolyzing ablator that has been used 
a baseline test case for modeling ablation and 
comparing various predictive models

• Properties Required
– Solid virgin and char specific heat, enthalpy, thermal 

conductivity, absorptivity and emissivity
– Pyrolysis gas enthalpy
– Surface thermochemistry mass loss and gas phase 

enthalpy
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Thermophysical 
properties defined 
separately for virgin and 
char constituents. 
Composite properties 
determined by mixing 
rule based on mass. 

Thermophysical Properties

𝑘 = 𝑥𝑘𝑣 + (1 − 𝑥)𝑘𝑐

𝐶𝑝 = 𝑥𝐶𝑝,𝑣 + (1 − 𝑥)𝐶𝑝,𝑐
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Material Enthalpy

Virgin and char 
enthalpies computed 
from integration of 
specific heats.

ℎ =  
𝑇0

𝑇

𝐶𝑝𝑑𝑇 + ℎ0

ℎ = 𝑥ℎ𝑣 + (1 − 𝑥)ℎ𝑐
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Pyrolysis Gas Enthalpy

Pyrolysis gas enthalpy 
computed from 
equilibrium 
thermochemistry as a 
function of 
temperature and 
pressure.

ℎ𝑝𝑔 = ℎ𝑝𝑔 𝑝, 𝑇
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Surface Thermochemistry – Normalized Mass Loss

Surface 
thermochemistry 
conditions 
computed from 
equilibrium 
thermochemistry in 
terms of normalized 
mass fluxes.
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Surface Thermochemistry –Gas Phase Enthalpy

Enthalpy of gases at the 
wall computed similarly 
from equilibrium 
thermochemistry.

ℎ𝑤 = ℎ𝑤(𝑝, 𝐵𝑔
′ , 𝑇𝑠)
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Example Problems

• Look at four examples

– Thermogravimetric Analysis (TGA)

– Steady-state one-dimensional thermal and density 
profile

– One-dimensional transient temperature and 
recession history

– Two-dimensional transient temperature and 
recession history
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Thermogravimetric Analysis (TGA) Example
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Thermogravimetric Analysis (TGA) Example

• Three component TACOT model

• Linear ramp increase in temperature at 10 K/s

• First-order time integration, not a spatial problem

• Results provide density and reaction rate for three 
components as a function of time

• COMSOL Multiphysics results compared to independent 
fourth-order Runge-Kutta calculation
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TGA Results - I
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TGA Results - II
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Steady-State Profile Example
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Steady-State Profile Example

• After long times in an infinite sample with a fixed surface 
temperature and recession, temperature and density profile 
will reach a steady state

• Problem solution becomes independent of time

• For this problem, specified surface temperature (3000 K) and 
recession rate (110-4 m/s) was used

• COMSOL Multiphysics results compared to independent 
second order finite difference calculation and results from the 
Fully Implicit Ablation and Thermal Analysis Program (FIAT)
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Finite Difference Temperature Profile Comparison
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Finite Difference Density Profile Comparison

25

-0.14%

-0.12%

-0.10%

-0.08%

-0.06%

-0.04%

-0.02%

0.00%

0.02%

0.04%

220

230

240

250

260

270

280

290

0 0.02 0.04 0.06 0.08 0.1

R
el

at
iv

e 
D

if
fe

re
n

ce

D
en

si
ty

, k
g

/m
3

Distance, m

Finite Difference

COMSOL

Solution Difference



FIAT Temperature Profile Comparison
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FIAT Density Profile Comparison
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One-Dimensional Transient Example
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One-Dimensional Transient Example

• Problem is for a planar, finite width slab heated on one 
surface

• Full surface thermochemistry

• COMSOL Multiphysics results compared to FIAT results
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FIAT Surface Temperature Comparison
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FIAT Recession Comparison
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Char and Pyrolysis Surface Mass Loss Rates
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FIAT In-Depth Temperature Comparison
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FIAT Temperature Profile Comparison after 60 s
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FIAT Density Profile Comparison after 60 s
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Two-Dimensional Transient Example
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Two-Dimensional Transient Example

• Problem is for a two-
dimensional, axisymmetric 
puck

• Top of puck heated with 
Gaussian flux profile

• Pyrolysis gas flow calculated 
from potential flow

• Full surface thermochemistry 
with recession

• 2-D COMSOL Multiphysics

results compared to a series 
of 1-D results
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2-D Problem Animation
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Original and Deformed Mesh
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Pyrolysis Gas Flowrate
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Final Recession Profile at 30 s
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Summary

• This work has demonstrated that a commercial finite element 
code is a suitable tool for modeling pyrolyzing ablative 
materials

• General capabilities of COMSOL Multiphysics allow for a 
wide variety of geometries and problems to modeled

• Code allows for modifications to model to be made quickly 
and easily

• Advanced solution algorithms are efficient and stable

• Integrated environment provides a very user friendly and 
powerful system for modeling

• Multiphysical modeling capability allows for structural end 
external flow to be incorporated into analysis (in progress)
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